Divergence-free wavelet bases on the hypercube
نویسندگان
چکیده
منابع مشابه
Divergence-free Wavelet Bases on the Hypercube
Abstract. Given a biorthogonal pair of multi-resolution analyses on the interval, by integration or differentiation, we build a new biorthogonal pair of multiresolution analyses. Using both pairs, isotropic or, as we focus on, anisotropic divergence-free wavelet bases on the hypercube are constructed. Our construction generalizes the one from [Rev. Mat. Iberoamericana, 8 (1992), pp. 221–237] by...
متن کاملDivergence-free wavelet bases on the hypercube: Free-slip boundary conditions, and applications for solving the instationary Stokes equations
We construct wavelet Riesz bases for the usual Sobolev spaces of divergence free functions on (0, 1)n that have vanishing normals at the boundary. We give a simultaneous space-time variational formulation of the instationary Stokes equations that defines a boundedly invertible mapping between a Bochner space and the dual of another Bochner space. By equipping these Bochner spaces by tensor prod...
متن کاملDivergence-Free Wavelets on the Hypercube: General Boundary Conditions
On the n-dimensional hypercube, for given k ∈ N, wavelet Riesz bases are constructed for the subspace of divergence-free vector fields of the Sobolev space Hk((0, 1)n)n with general homogeneous Dirichlet boundary conditions, including slip or no-slip boundary conditions. Both primal and suitable dual wavelets can be constructed to be locally supported. The construction of the isotropic wavelet ...
متن کاملDivergence-free Wavelets on the Hypercube: General Boundary Conditions
On the n-dimensional hypercube, for given k ∈ N, biorthogonal wavelet Riesz bases are constructed for the subspace of divergence-free vector fields of the Sobolev space Hk((0, 1)n)n with general homogeneous Dirichlet boundary conditions, including slip or no-slip boundary conditions. Both primal and dual wavelets can be constructed to be locally supported. The construction of the isotropic wave...
متن کاملRemarks on multilevel bases for divergence free nite elements
The connection between the multilevel factorization method re cently proposed by Sarin and Sameh for solving mixed discretizations of the Stokes equation using a divergence free nite element formula tion and hierarchical basis preconditioners is established For the D triangular Taylor Hood element a preconditioning method is proposed that could be useful in fractional step methods
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2011
ISSN: 1063-5203
DOI: 10.1016/j.acha.2010.01.007